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A derivation of a pair of Maxwell equations which is based on the concept of a 
Poisson structure on a manifold is given. The idea is geometric in character, and 
is extended to a generalized algebra. The special case of the dynamics for a 
particle in a Yang-Mills field is obtained as a consequence of the generalized case. 

1. I N T R O D U C T I O N  

The Poisson bracket has played an essential role in the development of  
classical mechanics and the transition to quantum mechanics. Suppose that 
one has a classical dynamical system F, and one would like to know if F 
can be given a description in terms of  some Poisson bracket and a Hamiltonian 
function. This has come to be known as the inverse problem of  Poisson 
dynamics. One typically has to make some further assumptions concerning 
the type of  Poisson manifold. If  the inverse problem is solved and a Poisson 
tensor T is found, one can then ask if there exists a symplectic realization 
for it, that is, a symplectic manifold (P, l-l) and a Poisson map ~b: p --> M 
(Marsden and Ratiu, 1994; Abraham and Marsden, 1978). 

Feynman 's  procedure to develop minimal coupling to standard electrody- 
namics is related to these areas and has come to be known as Feynman's  
problem (Dyson, 1990). Although the original intent was in finding new 
kinds of  particle dynamics, it has evolved into a problem which deals with 
a full set of  dynamical systems, in particular, those which are second-order 
differential equations on a velocity phase space, TQ.  The problem can then 
be stated in a general way as finding all Poisson tensors on T Q  such that they 
have Hamiltonian vector fields which correspond to second-order differential 
equations and such that {qi, qj} = 0 ,  that is, the property of localizability 
holds (Carinena et aL, 1995). 
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The idea of the paper is to give a presentation of Feynman's original 
idea. Moreover, it has developed into a derivation of the Lorentz force law 
and two of Maxwell's equations. It will be illustrated that in order to obtain 
dynamics, one need only postulate the Poisson brackets of the particle. It 
will then be shown that this can be generalized to the case of the dynamics 
of particles which possess other internal degrees of freedom, I a, but do not 
necessarily generate a finite algebra. The case in which the I a generate a Lie 
algebra will be written down. In a similar manner, one need postulate the 
particle's Poisson brackets and a Hamiltonian evolution. Not everything here 
is new; the main intent is to give a mathematically complete presentation of 
the development, and to present some physical insights into the mathematics. 
It will be shown that a derivation which is very algebraic as well as geometric 
in nature can be developed. This type of examination may be useful, given 
the current interest in gauge theories, quantum algebras, and their use in 
constructing gauge theories, as well as the current interest in duality (Tani- 
mura, 1992; Kaku, 1988; Hatfield, 1992). 

To establish some notation and background, let us call ~ the algebra 
of classical observables on the manifold M. A Poisson structure on a manifold 
M is a skew-symmetric bilinear map which is denoted { , }: ~ × ~ ---) 
such that: 

(i) (~, { , }) satisfies the Jacobi identity, 

{F, {G, H}} + {G, {H, F}} + {H, {F, G}} = 0 (I) 

(ii) The map Xe = {-, F} is a derivation of the associative algebra 
~ ( ~ )  on M, that is, it satisfies the Leibnitz rule, 

{F, GH} = G{F, H} + {F, G}H (2) 

A manifold M which is endowed with a Poisson bracket on o~(alt) is called 
a Poisson manifold. 

In the following, the properties (i) and (ii) will be used frequently. A 
deep theory can be developed around this concept. For example, let P be a 
Poisson manifold. If H ~ o~(~), then there is a unique vector field XH on P 
such that 

XHG = {G, H} (3) 

for all G ~ ~(~) .  The vector field XH is called the Hamiltonian vector field 
of H. This is a consequence of the fact that any derivation on ~ (~ )  is 
represented by a vector field. 

Any function H E ~ will define a dynamical system on M by the equation 

dF 
- -  = {F ,  H }  ( 4 )  
dt 
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Finally, in a set of local coordinates (w ~) for M, the coordinate expression 
for the Poisson bracket {F, G} is 

OF 
{F, G}  = X o F  = {w", G} - -  (5) 

0w ~ 

Repeated indices are summed over. 

2. P O I S S O N  B R A C K E T S  A N D  T H E  M A X W E L L  E Q U A T I O N S  

A derivation which was originally proposed by Feynman (Dyson, 1990) 
to generate two of the Maxwell equations is presented in detail. The presenta- 
tion which is given here tries to rely as much as possible on the basic algebraic 
and analytic properties of  the bracket which have been written down in the 
introduction. The idea is that no further assumptions in this section are 
made regarding the bracket other than these and the Leibnitz rule for the 
time derivative. 

Let the local coordinate variables be written in the form (w ~) = (x/, v i) 
for i = 1, 2, 3, where the x / may be interpreted as position coordinates 
and v i represent velocity. First of  all, the fundamental Poisson brackets are 
postulated to be as follows: 

{xi, xj} = 0, m{xi ,  vj} = ~ij (6) 

The equations of  motion which are based on these variables using (4) are 
given as follows: 

.~ = {x i, H} = v i, mr, 'i = m { v  i, H}  = F i (7) 

Notice that this implies that the Hamiltonian dynamical system is a second- 
order differential system. 

Differentiating the second bracket in (6) with respect to time gives 

{.~,, v/} + {xi, ~/} = 0 (8) 

Multiplying both sides by m and using the equations of motion, one obtains 

m{xi,  Xg} + {xi, Fj} = 0 (9) 

Since the bracket is bilinear, this equation can be put into the form 

{{xi, Fj},x  k} + m{{£i, Xj},x k} = 0 (10) 

Substituting .~, 2j, and x k into Jacobi's identity, one obtains 

{{~, ~j}, x ~} + {{xj, xk}, ~ } + {{xk, ~}, ~j} = 0 

Since the bracket {xj, x k} is proportional to ~ ,  this reduces to the constraint 

{{x;,x~}, xk} = 0 
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Substituting this into (10), one obtains 

{x k, {2, Fj}} = 0 

The tensor {xi, Fj} is therefore antisymmetric on account of the bracket 
property. This can be expressed in its dual form by a relation such as 

1 
{ Fi, xj} = m f-ijk Hk (11) 

where Hk is the component of a pseudotensor H which will depend on the 
coordinates of M and possibly time. 

It has been shown that {x k, {x/, Fj}} = 0, so when the relation above 
is substituted, a bracket which contains Hk can be obtained, 

{x 2, I lk}  = 0 

On account of (6), this means that the vector H depends only on the position 
and time of the particle. The equation above and (6) imply that F i is at most 
linear in the velocities, so we may write 

Fi(x ) = Ei(x) + ~.ijkvJnk(x) 

This is the Lorentz force law when the electric charge is unity. It defines the 
electric field, and so, using bilinearity and the derivation property, we obtain 

{ Fi,  xt} = { Ei + f.iyt, vJH k, xl} 

= {El, xt} + {~ijkvYH k, xl} 

= {Ei, xt} + ¢ijkvJ{H ~, xt} + Eijk{ Ilj, x t } H  k 

": {Ei, Xt } + 1 ~_ilkH k 
m 

The vectors E and H are not independent. On account of equation (11), the 
last equation above implies that 

{Ei, xt} = 0 

This implies that the E vector, like the H vector, depends only on the position 
coordinate and time. Summarizing the two equations which are needed to 
proceed with the development, one has 

{xi, Fj} = - m { X i ,  2j}, {Fi, xj} = 1 e-~.Hk 
m 

Combining these two equations leads to a new equation for Hk in terms of 
the bracket: 
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e~.Hk = m2(•i, .icj} (12) 

Using the identity %ke irk = 2~ and moving the e-tensor to the right-hand 
side produces 

H i =  I 2 Tm eik j {2k, fCj} 

Applying the Jacobi identity to the variables -~t, -~y, and.~k and then contracting 
indices with e jkt gives 

~Jk~{xt, {~j, xkl} = 0 

Replacing {xj, .~k} with Hk yields 

{-~/, Ht} = 0 

Using equation (5) and the fact that Ht does not depend on ,f;, one obtains 
the first important result, 

aH/ aHt m- 1 aH~ 
{HI, 211 = {wa, :ctl ~ = {x,, 211 ax---~ : Ox--~t 

The bracket on the left is zero, and so this gives the first Maxwell equation, 
7 . H  = 0. 

To obtain the second equation, one begins with the equation 

Hi = 1 2 {Jet, .~j} Tm eik) 

Differentiating both sides of this equation with respect to t, one obtains 

OH i, + OH! 2j  = 1 m2eikj {Yk, xj} + -1 2 {Xt, J(,j } ---- mZel~ji{Yk, Xj } 
Ot Oxj "2 2 m eikj 

By substituting the equation Fk = mYk = Et + ¢~t2,,Hi from (7), we can 
write the right-hand side of the equation as 

%im{Ek + e~txaHz, :¢j} 

= m¢i1,y{Et, xjl + meikj¢J, al{2~Ht, 2jl 

= meikj{Ek, Xj} + m{J~jHi, X j} - m{XiHj, X j} 

= meitj{E~, 2j} + re{Hi, ~JlScj + m{:~j, ,~JlHi - m{Hy, JcJ}2i - m{xi, ±J }l-Ij 

The last term on the right-hand side of this equation is zero by symmetry 
using the equation for Hi, and we substitute {Hk, .~} = 0. Using (5), this 
takes the form 

aHi aE~ aHi OHi + - - . i c J  + 2 j (13) 
a--7 Oxj = - % k  Oxj OxJ 
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This is just another Maxwell equation, namely 

OH 
- - + V x E = O  
Ot 

Notice that although this produces only two of the Maxwell equations, due to 
the symmetry here, the remaining pair can be obtained by using an elementary 
transformation which sends E into H and H into - E .  

3. GENERALIZED ALGEBRA AND EQUATIONS 

The space is again coordinatized by the position coordinates and velocity 
as (x/, vi), where i = 1, 2, 3. Suppose the Poisson brackets involving the 
coordinates are again postulated to be 

{x i , x  j} = O, m{~,v  j} = 8 ij 

Introduce internal degrees of freedom which are denoted I ° = l~(t) ,  a = l, 
. . . .  N, and postulate the following Poisson bracket relations for them: 

11 °, t q  = Cab(~, Ix", t ~} = 0 

More generally, assume that for arbitrary functions A and B of the variables 
x and I, one can write 

{A,  B}  = Cab( l )SaASbB  (14) 

in any local region of M, where Oa = 8,, denotes the derivative with respect 
to I ~. The only assumptions placed on the functions Cab(/) will be 

C~(/)  = -Cb~(/) 

and 

8eCbcC aa + 8aC¢'~C bd + 8 d c " b c  ~d = 0 

which follow from the antisymmetry of the Poisson brackets and the 
Jacobi identity. 

In fact, more generally, a convenient way to specify a bracket in finite 
dimensions is by giving the coordinate relations {z i, z j} = BiJ(z). The Jacobi 
identity is then implied by the special cases 

{{z i, z j ), z ~} + { {z k, zq, zq  + {{zL zq,  z/} = 0 

which may be equivalent to the differential equations (Marsden and Ratiu, 
1994), 
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O B ki B li OBJk + B O + B tk OBq = 0 
O Z l O Z I t~ Z l 

It will be shown that the equations of motion for the particle must be of 
the form 

m 9  i = ~iJ(x, t, l ) v  j + ~ i ° ( x ,  t, I )  (15) 

]a = __Aia(x ' t, I ) V  i - -  A°"(x,  t, 1) (16) 

The fields satisfy 

~¢~(x, t , / )  = - ~ ( x ,  t , / )  

and the potentials A ~ ( x ,  t, /) (~v = 0 . . . . .  3) satisfy the consistency 
conditions 

Dx~ ~ + D ~  vx + D ~  x~' = 0 (17) 

~ a ~ v C  aa = DP'A va - D~A ~ (18) 

~dC~bA w~ = ~dA~bC ~d - ~ d A ~ C  bd (19) 

The derivative D x in these equations is defined by the equation (Stem and 
Yakushin, 1993), 

D ~ = a~ - A ~ S d  

Here, a ° and &i denote partial derivatives with respect to the coordinates t 
and xj ,  respectively. 

Define the two fields ~ij and A ia according to 

~ i j  = _ _ ~ j i  = m2{v  i, v j } ,  A i~ = m { v  i, I a } (20) 

and apply the Jacobi identities. It will be seen that most of the equations 
which are required can be obtained using the Jacobi identity. Consider first 
the variables ~, v J, and vk: 

{{x~, vq, v k} + {{vJ, vk}, x/} + {{vk, x'}, vq = 0  

that is, 

{ ~ k ,  ~-} = o 

Similarly, substituting x i, v y, and I ~, one obtains 

{ {x i, vq,  I"} + {{vJ, I"}, xq + 1{I", xq, vJ} = 0 

that is, 

{a  j", x i} = o 

It is for this reason that ~ij and A i" are functions of x, t, and I only. 
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To begin, substitute the variables I '~, I b, and V i into the Jacobi identity 
to obtain 

{ {I a, It'}, v i} + { {I t', vii ,  I a} + { {v i, Ia}, I t'} = 0 

m { C a b ( I ) ,  1 )i} -- c p a ( I ) S p A  ib q- c p b ( 1 ) S p A  ia = 0 

- -m{ l  p, v i } S p C  ab -'J- c a p ( l ) S p A  ib - c b p ( l ) S p A  ia = 0 

5pCabAip = c a p ( l ) S p A  i b -  Cbp(1)SpA ia 

Hence, this is just (19) with Ix = i. 
Now substitute v i, v J, and I ~ into the Jacobi identity to obtain 

{ {v i, v i i ,  I ~) + { {v j, I~},  vii + { {I'~, vi}, 11 j} = 0 

{~ij ,  i a} + m{AJ~, v i} _ m{Ai~, v j} = 0 

c p a S p ~  ij = m { a  ia, V j}  --  m{A ja, v i} 

Suppose one substitutes v i, v i, and v k, then the equations which result are 

{(lfi, k'J}, k 'k} + {{k 'j, k'k}, k 'i} + {{V/~, v i i ,  •J} = 0 

{ ~ j ,  v ~} + { ~jk, v ~} + { yki, vi} = 0 

{v ~, ,~iJ} + {V, ~i*} + {vi, ~k~} = 0 

Let us summarize the two equations which were obtained above: 

5d~OC ~a = m { v  i, A i~ } - m { v  i, A J~ } (21) 
{ v i, ~ ik}  + { vi, ~ki}  + { V ~, ~01 = 0 

Suppose both sides of the equation m{x ~, v i} = g 0 are differentiated with 
respect to time using the Leibnitz rule. One obtains an additional equation, 

/.e, vi i  + (x/, ~i) = 0 

m2{x/, 9j} = _m2{.¢/, v j} = _ ~ i j  

Similarly, the bracket {x", I ~ } = 0 gives rise to 

{.~,I a} + {x i , ] ' }  = 0 

m { x  i, l ~} = _Ai~ 

But these imply the structure of equations (15) and (16), which then define 
A °~ and ~0.  Taking the time derivative of {I ~, I o} = C"b(l)  gives 

{1 ~, 1 b} + {1", i b} = 5dC"°( l ) l  d = --SdC"b(l)Aidv i - 5dC"b(DA Od 

Substituting for J~ gives 

{ - A i ~ v  i _ AO~, I b } + { I ~, --Aibv i _ AOb } = -- BaC,b(1)Aidvi -- 5dC~b(I)AOd 
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that is, 

- {miav i, I b} - {A Oa, I b} - { la, Aibv i} -- { Ia, A oh} 

= --~dCab(1)Aidv i -  ~dcab(DA Od 

This can be simplified by using the derivation property, equation (14), and 
the equation for A i~. It can be seen that one gets (19) with ~ = 0, and ~ = 
i, which multiplies v i. 

By differentiating A ia = m { v  ~, I a} with respect to time and using the 
derivation property of the bracket, one obtains 

O°A ia + OJAiavj + ~dAiai d = m{9, ]a} + m { v  i, ]a} 

Substituting the equations of motion into both sides of  this equation, one 
obtains 

OOAia + O.iAi~,vj + 8dAi,~(_A~vk _ Aod) = { ~ q v  i + ~i0, I ~ } + m{v", 
--AJalfi -- AOa} 

Expanding this out, one finds 

OOA ~ + OJAi~vj - ~dAi~Akdv k -- r~dAi~AOa 

: { O ~ i j l 2 j  ' i a} + {~i0, i a} _ m { v  i, AJavJ} _ m { v  i, AOa} 

= 1 ~iJAJ, ~ + {~ij,  l a } v  j + {o~iO, t a} _ L ~iJaJa _ m { v  i, aJa}vJ  
m m 

-- m { v  i, A Oa } 

= {~ij ,  l,~}vj + {~io, i,~} _ m{v", aJ'~}v j - m { v  i, A °'~} 

= cPa~p~iJv j -1 r c p a ~ p ~  iO - m { v  i, AJa}v  j - m { v  i, A °'} 

Using the equation for C P ~ p ~  ij, we transform the right-hand side into 

Cpa~p~ iO - m { v  i, A °~ } - m l v  j, Ai~}v j 

Now equate terms which are linear in vy and terms which are independent 
of vj: 

OiAJa - ~dAJaA id = - m { v  i, A ja } 

or, in terms of  the operator D ~, 

DiA ja = - m { v  i, A j" } 

The other constraint is 

OoAia __ ~dA,aA Od --__ c d a ~ d f f i O  - -  m { v  i, A °~ } 
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By substituting DiA ia = - m { v  i, AJo}, this can be written 

cact~do~iO = A O a ~ d A  ia - OOAia _ m{v/, A Oa } = DiAOa _ OOAia 

But this is just (18) with Ix, v = i0. The fact that {v i, A i '} and {v i, A °~ } are 
independent of v has been used. This follows from the Jacobi identity; for 
example, using the Jacobi identity and taking x, v, and A ia, one obtains 

{x i, {vJ, Ak"}l + {v j, {A~,xi}} + {A ~, {x i, vJ}} = 0 

Since {x/, vJ} is proportional to ~i/and {A ~, x ~} = 0, it follows that {x ~, {v/, 
Ak~}} = 0 and therefore {vJ, A k~} = 0. Substituting DiA j'~ = - m { v  i, A j'} 
into the constraint for c"a~a ~ij, one obtains 

c a d ~ d ~ i J  = m{v  j, A ia } - m{v  i, A ja } = D i A  ja - DJA ia  

which is equation (18) with (Ixv) = (ij). 
By differentiating ~ J  = m2{v ~, v i} with respect to t, one obtains 

oo~ij + O~iJvk + ~a°~iJ] a = m2{f a, v j} + m 2 { v  i, (pJ} 

Substituting the equations of motion, we find 

c~O~ij .4- ok~ iJvk  q.- B d ~ i J ( - - A k d v t  - -  AOa) 

= m{,~ikvk + ~/0, V j} + m{v  i, ~jkvk + ~j0} 

= m{~ikv k, v j} + m { ~  i°, vi i  + m{v  i, ~Jkvk} + m{v  i, ~jo} 

= m{v k, vJ}~  ik + m { ~  ik, vJ}v k + m{v  i, ~Jk}v k 

+ m~Jk{v i, vk} + m{v/, ~jo} + m{~io,  v j} 

Since the bracket is antisymmetric, this equation simplifies to 

o30~ ij "1- ok~iJVk - -  A k d ~ a ~ i J v  k --  A°a~a~o 

= m { ~  ik, vJ}v k -- m { ~ J  k, vi}vk + m { ~  i°, v .i} - m{~. i  o, v i} 

Terms which are linear in vk and terms which are independent of v~ are to 
be equated next. This will give two constraint equations as follows; the first is 

,gk~ij  - -  Akd~d,_,~iJ = m { ~  ik, v j } - -  m { ~ J  k, v i } 

This can then be written in terms of the operator D ~' = 0 ~ - A ~ a  as follows: 

Dk~ ij = m{v  i, ~JJ'} - m{vJ, ~ik} 

DO~ij = m{ v i, ,~j0} _ m{ v j, ~io} 

If we take in general D~ ¢ = -m{  v i, f} ,  we can write the second equation, 
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DO~ij = -DiU~jo + D J ~  iO = -Di~;j0 _ DJ~Oi 

By writing cyclic permutations of the first equation above, we obtain the 
following three equations: 

13¢~ ij = m { v i, ~ j k  } _ rn { v j, ~ik } 

D i ~  jk = m { v j, ~ki} _ m { v k, ~ j i }  

D J ~  ki = m { ~ ,  ~ i j  } _ rn { v i, ~k j  } 

Adding these three equations, we obtain the following result: 

D k ~  i-i + D i ~  -ik + D-i~  ki = 0 

This is in fact equation (17). To conclude, then, we should stress that the 
Leibnitz rule for the time derivative acting on Poisson brackets has been 
assumed in both sections. This may not be valid in general. However, it is 
true if the system admits a Hamiltonian H, and the equations of motion can 
be written as Hamilton's equations of motion using H. 

4. SPECIAL CASE OF THE A ( x , / )  FIELD 

Suppose one takes the following specific form for the AO(x , / )  field: 

Aa(x, I) = gCab(I)Ao(x)  

It is not hard to show that the one-form given above satisfies (19). The right- 
hand side is 

~ A ~ b c a d  --  ~ d A ~ a C  bd = g ( ~ d C b k c  ad --  ~ d C a k c b d ) A k ( X )  

The left-hand side is 

~ d C a b A  p'd = g ~ d C a b c d k A k ( x )  

Equating the coefficients of A on both sides gives the result. 
Substituting the form of the derivative D" and this particular ansatz into 

(18), one obtains 

c a d ~ d ~ P . v  ~_ (OIL - -  A ~ d ~ d ) g C a b ( I ) A ~ , ( X )  - -  ( 0  v - -  A U d S d ) g C a b ( I ) A ~ ( x )  

= gCab(O~A~,(x) - O~A~(x)) - g2(Cd~Ae/A~, - CdkA~.A~)~d Cab 

= gCab(OV-A~ - c3VA~) + g2~3dCba(A~AV b - A,~A~)C dk 

= g C a O ( a v ' A ~  - aVAg)  q- g2C~SdCb"(A~A~ - A~.A~,) 
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Substituting for Ckd~dCba , w e  can write the second term on the right-hand 
side in the form 

c k a ~ d C b a ( A ~  A ~ - -  A~ A~) 

= c a d ~ d C k b ( A ~ A ~ ,  - -  A~Ay,) - C b d ~ d c a k ( A ~ A  ~ - -  A~A~,) 

Replacing b by k and k by b, we can write this as 

C~tSdCb'~(A~A ~ -- A~'A~) 

= c a d ~ d C l C b ( A ~ A  ~ --  AgA'~) - C k d ~ d C a b ( A g A  ~ - -  A~A~)  

Solving for the common factor in this, we obtain the equation 

C ~ d c b a ( A g A ' ~  - A~'A~) = 1 ad ~ ,, "~C ~dC (A~Ab - AgA~)  

Substituting back into the original equation, we obtain the result 

g2 
C ' ~ d ~ d ~  = gC'~b(O~A~, - a~A~) + ~- C'~dSdC~(A~A~, - AgA~)  

Putting all terms on one side, we find 

g2 
8b.~ ~'' -- g(O~A~, - a~Ag) - -~- ~bC*S(A~'A~ - A~A'[.) = 0 

This can be written entirely in terms of forms as follows: 

2 

~b~; -- gdAb(x)  - ~ ~ b C k l ( A k ( X ) ^  At(x))  = 0 

and ~ is the two-form on Minkowski space, with components ~ .  This 
equation can be solved by means of  the equation 

g2 
~(x, I) = gdA,~I a + -~ cab(1)Aa ^ Ab (22) 

The dynamics of a particle in a Yang-Mills field is obtained when one 
sets C ~b equal to a sum of  terms which are linear in L Suppose one puts 

cab(1) = ~bl~ 

The coefficients c~ b are the structure constants which are associated with 
some Lie algebra G. Then one clearly has the relations 

c ~ d  + '-d~'~"t'-~ + ~bC~d = 0 

Moreover, A ~ and ~ are also linear functions of I, A b --'- A b ( X  ) corresponding 
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to Yang-Mills connection one-forms, and g is the coupling constant. One 
can write 

~(X,  /)  = gFd(X)[ d 

This is determined by equation (22) as follows: 

gZ 
~;(X, /)  = gdAd Id + -~ ~dbldAa A A b 

= g(dAd+ c~tbAaA ab)I d 

Now Fd = Fd(X) can be identified with the field strength two-form for 
Yang-Mills theory, 

F,~ = dAa + 2 ~bAa ^ Ab 

From (17), one has for the first term on the left 

D ~  = g(OXF~ ~ + g~dA~(x )F~(x ) )P  

and with cyclic permutations, it can be seen that this generates the Bianchi 
identity for Yang-Mills fields, namely 

dFa + g~dA b A Fd = 0 

It has been shown that the Lorentz force law and a pair of Maxwell 
equations without sources can be obtained by postulating a very simple 
Poisson bracket structure on the local coordinates of the phase space manifold 
of a particle. An elementary symmetry transformation then yields the other 
pair of equations. It is necessary only to postulate the particle's Poisson 
brackets and to assume the existence of a Hamiltonian evolution. In the case 
of a more general algebra, virtually everything comes from the structure 
of the bracket and the Jacobi identity. Other, more complicated symmetry 
transformations, but analogous to the one described for the Maxwell equa- 
tions, may be of use in generating further equations in the generalized cases 
as well. 
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